1. Combinations with Repetition
OK, now we can tackle this one ...
Let us say there are five flavors of icecream: banana, chocolate, lemon, strawberry and vanilla. You can have three scoops. How many variations will there be?
Let's use letters for the flavors: {b, c, l, s, v}. Example selections would be
|
(And just to be clear: There are n=5 things to choose from, and you choose r=3 of them.
Order does not matter, and you can repeat!)
Order does not matter, and you can repeat!)
Now, I can't describe directly to you how to calculate this, but I can show you a special technique that lets you work it out.
Think about the ice cream being in boxes, you could say "move past the first box, then take 3 scoops, then move along 3 more boxes to the end" and you will have 3 scoops of chocolate!
| |
So, it is like you are ordering a robot to get your ice cream, but it doesn't change anything, you still get what you want. |
Now you could write this down as (arrow means move, circle means scoop).
In fact the three examples above would be written like this:
{c, c, c} (3 scoops of chocolate): | |
{b, l, v} (one each of banana, lemon and vanilla): | |
{b, v, v} (one of banana, two of vanilla): |
OK, so instead of worrying about different flavors, we have a simpler problem to solve: "how many different ways can you arrange arrows and circles"
Notice that there are always 3 circles (3 scoops of ice cream) and 4 arrows (you need to move 4 times to go from the 1st to 5th container).
So (being general here) there are r + (n-1) positions, and we want to choose r of them to have circles.
This is like saying "we have r + (n-1) pool balls and want to choose r of them". In other words it is now like the pool balls problem, but with slightly changed numbers. And you would write it like this:
where n is the number of things to choose from, and you choose r of them (Repetition allowed, order doesn't matter) |
Interestingly, we could have looked at the arrows instead of the circles, and we would have then been saying "we have r + (n-1) positions and want to choose (n-1) of them to have arrows", and the answer would be the same ...
So, what about our example, what is the answer?
(5+3-1)! | = | 7! | = | 5040 | = 35 |
3!(5-1)! | 3!×4! | 6×24 |
No comments:
Post a Comment